
Copyright © 1998 by Tommi Johtela. All rights reserved.

A permission to redistribute this document is granted as long as no fee
is charged and the document's contents is not modified in any way.

E-mail: tjohtela@cs.utu.fi  WWW: http://www.cs.utu.fi/tjohtela

Delphi
Persistent

Container
Library

Programmer's Manual
© Tommi Johtela 1998



Delphi Persistent Container Library 2

Contents

Contents ................................................................................................................. 2

Introduction........................................................................................................... 3

Class Hierarchy and Applicability ........................................................................ 4

PCL Framework Classes ....................................................................................... 4

Class TItem ......................................................................................................... 5

Class TContainer ................................................................................................. 5

Class TSequence ................................................................................................. 6

Class TSet ........................................................................................................... 7

Class TDictionary................................................................................................ 8

Using Persistence ................................................................................................... 9

Implementing the Read and Write Methods .......................................................... 9

Writing the State of an Item to a Stream ......................................................... 10

Reading the State of an Item from a Stream.................................................... 10

Registering Persistent Classes ........................................................................... 11

Saving Items to a Stream or File ........................................................................ 11

Loading Items from a Stream or File.................................................................. 11

Design Philosophy behind the PCL Framework................................................. 12

Model–View–Controller Approach..................................................................... 12

PCL Utility Classes.............................................................................................. 13

Class THashTable.............................................................................................. 13

Class TStringTable ............................................................................................ 16

Class TBitSet .................................................................................................... 16



Delphi Persistent Container Library 3

Introduction
Perhaps the biggest shortcoming of the Delphi's Visual Component Library (VCL) is
the lack of generic container classes. The only general data structure that Delphi of-
fers is the TList class, which is a simple array-like container for storing untyped
pointers. Compared to other object oriented languages, like C++ or Java, this kind of
container supply is simply inadequate. For example, C++ includes the Standard Tem-
plate Library (STL), which is a very powerful generic data structure library. Java has
also recently added a set of container classes to its standard libraries (JDK 1.2),
whereas Delphi has stuck with the TList class ever since the first version. To address
this shortcoming I wrote a small class library that presents three elementary abstract
data types (ADTs):

• The TSequence class represents an array-like, sequential data structure. The class
uses Delphi’s TList class for its implementation.

• The TSet class represents an unordered set structure, which can insert and re-
move items efficiently. The class is implemented with a hash table.

• The TDictionary class is a random-access data structure, which maps string keys
to the items of a dictionary. Like the TSet class, a dictionary can also insert and
remove items quickly.

All of these container classes inherit from the abstract base class TContainer, which
defines the common functionality of the containers.

The most important property of these containers is persistence. This means that the
objects stored in a container can be written to a data stream, like a file or network
connection. The state of these objects can be restored later by reading them back from
the stream. Each item in a container is responsible for saving and restoring its own
state. For this reason, the item classes must be derived from the class TItem instead of
TObject. This somewhat limits the usability of the containers but, on the other hand,
the class design is much simpler when the items share a common superclass.

In addition to these abstract data types, the library includes a set of utility data struc-
tures similar to the VCL classes TList and TStringList. In fact, the interfaces of these
classes are very similar to those found in the VCL, so they can be used, in some
cases, interchangeably with the VCL classes. These utility classes are:

• THashTable is a hash table data structure, which can store and retrieve data
quickly using integer keys (see for example Introduction to Algorithms by Cor-
men et al. for a description of hash tables).

• TStringTable is a descendant of THashTable that uses strings as its keys.

• TBitSet is a set data structure that is implemented as a bit string. It can be used to
store positive integers in a compact form. Common set operations, such as union
or intersection, can also be performed between TBitSet objects. Since these op-
erations are coded mainly in assembly language, they are very fast.

Together all these classes (plus few more) form the Persistent Container Library
(PCL). The design goals of this library are:

• Simplicity. Using the containers should be easy. This shortens the learning curve
of the library.

• Compactness. Classes should be lightweight so that their inclusion does not in-
crease the size of the executable code excessively.

• Extensibility. It should to be easy to add new data structures to the library. There
should be an abstract superclass that defines the obligatory services of the con-
tainers.

• Consistency with the VCL. The interfaces of the classes should be similar to
those found in the VCL. The method names and parameters should be the same



Delphi Persistent Container Library 4

than in the VCL, and the design philosophy of the Delphi standard libraries
should be followed.

The library requires (at least) version 4 of the Delphi.

Class Hierarchy and Applicability
Figure 1 shows the class hierarchy of the Persistent Container Library.

TBitSetTBitSet

TObjectTObject

THashTableTHashTableTItemTItem

TStringTableTStringTable

TSequenceTSequence TDictionaryTDictionary

Fr
am

ew
or

k 
C

la
ss

es

Toolkit Classes

TSetTSet

TContainerTContainer

Figure 1: The class hierarchy of the library

The classes in the library can be divided into two categories:

1. Framework classes that are used to build applications with persistent states. To
use the services of the library a client class has to inherit from the TItem class
and implement a few methods (e.g., Read and Write to be able to use the persis-
tence mechanism).

2. Utility classes that provide a common data structure toolkit. These classes are
similar to the VCL classes like TList or TStringList. They are usually used by
composition instead of inheritance, which makes them applicable practically
anywhere.

It is important to make the distinction between toolkit classes that provide general
services and framework classes that somewhat dictate the structure of an application
using them. This gives the user a clear conception about the usability of a class li-
brary in a client application. Frameworks are used to construct certain types of appli-
cations, whereas toolkits contain helper classes that can be used in any application.
Framework classes also impose some responsibility to a client class that has to im-
plement some functionality to be able to use the framework. These approaches can
also be complementary, like in this case. The framework classes encapsulate the tool-
kit classes in well-defined interfaces adding some functionality in the process. For in-
stance, TDictionary uses the TStringTable class for its implementation.

PCL Framework Classes
This section introduces the framework part of the Persistent Container Library. The
PCL framework provides the following services:

• Memory management. Every container class has a flag, which tells if the con-
tainer owns the items that it contains. If it does, the items are disposed automati-
cally before the container is disposed. This mechanism is similar to what used
with the VCL components, so it should be already familiar to the majority of the
Delphi developers. The persistence mechanism uses this information also to de-
termine whether to write an item or only its reference to a stream.



Delphi Persistent Container Library 5

• Notification of attachment/detachment. An item class can be notified when it
is inserted to or removed from a container. For example, if an item class main-
tains a reference to the container it resides in, it can automatically update this
reference when its parent container changes.

• Persistence. The container and its items can be saved to or restored from a
stream. The framework provides reader and writer classes using which the item
classes can save and restore their state. The container saves and restores its items
automatically preserving their state and references to other objects.

Note: There are some limitations concerning this mechanism that are explained in the sec-
tion “Using Persistence” at page 9.

Every class belonging to the PCL framework is described separately below.

Class TItem
The TItem class is the abstract superclass inherited by every item class stored in the
containers and also by the container classes themselves. TItem defines four empty
method bodies, which may be overridden by a subclass. The declaration of the class
is shown in Listing 1.

Listing 1: TItem class
  TItem = class
  protected
    constructor Read(Reader: TItemReader); virtual;
    procedure Write(Writer: TItemWriter); virtual;
  public
    procedure Associate(AObject: TObject); virtual;
    procedure Dissociate(AObject: TObject); virtual;
  end;

Procedures Associate and Dissociate are used for notification of attachment and de-
tachment. The Associate procedure is called by a container when an item object is in-
serted to it and Dissociate is called upon removal of an item. The container's refer-
ence is passed to both of these procedures as an argument. The item object can thus
react to these changes, for example, by updating its parent references. The Dissociate
method is also called when the container is disposed.

This mechanism can also be used in a more general way when implementing associa-
tions between classes. Any object, which establishes a reference to an object derived
from the TItem class, can notify the item about the new association by calling its As-
sociate method. Conversely, when the referring object no longer points to the item
object or the referring object disposed, it calls the item's Dissociate method. This way
the item object knows, which objects refer to it and can maintain opposite pointers
back to them.

The Read and Write methods are used to store and restore the item’s state to/from a
stream. A reader or writer object corresponding to the input/output stream is given as
an argument to these procedures. Each item object is responsible for serializing its
own state. TItemReader and TItemWriter classes (derived from the Delphi classes
TReader and TWriter correspondingly) provide with the means for performing this
task. The serialization mechanism is discussed in more detail at page 8 in the section
“Using Persistence”.

Class TContainer
TContainer is the abstract base class of all the containers. It inherits from the TItem
class and overrides the Read and Write methods to make the containers persistent.
The declaration of the class is shown in Listing 2.

Listing 2: TContainer class
  TContainer = class(TItem)
  private



Delphi Persistent Container Library 6

    FHost: TItem;
    FOwnsItems: Boolean;
  protected
    constructor Read(Reader: TItemReader); override;
    procedure Write(Writer: TItemWriter); override;
    function GetCount: Integer; virtual; abstract;
  public
    constructor Create(AHost: TItem; AOwnsItems: Boolean =
      false); virtual;
    destructor Destroy; override;
    procedure Assign(Source: TContainer); virtual; abstract;
    procedure Clear; virtual; abstract;
    function First: TItem; virtual; abstract;
    function Next: TItem; virtual; abstract;
    property Count: Integer read GetCount;
    property Host: TItem read FHost;
    property OwnsItems: Boolean read FOwnsItems write
      FOwnsItems;
  end;

TContainer defines a virtual constructor that must be used to create a container. It
takes two arguments first of which tells the host object, that is, the object in which the
container resides. This reference is stored to the Host property and can be later used,
for example in the Associate and Dissociate methods of the item classes to get the
reference to the parent object of an item. The second argument is optional and tells if
the container owns its items. If it does, the items are disposed automatically when the
container is disposed. The default value of this argument is FALSE. This value can be
changed afterwards by modifying the OwnsItems property.

The Assign method can be used to replace the contents of a container with the items
of another TContainer object. This operation works as follows: first all the items in a
container are removed by calling the Clear method. Then the items of the container
specified by the Source parameter are copied to this container. The source container
is not affected by the operation. The Assign method is declared abstract in TCon-
tainer, so it is up to the subclasses to actually implement this operation.

Note: Only the references of the items in a source container are copied by the Assign
method not the items themselves. Thus, after copying there exists at least two con-
tainers, which contain the same TItem objects. This may cause problems, for exam-
ple, if both containers own the items they contain. An item can naturally have only
one owner at a time.

The Clear method removes all the items in a container. If the OwnsItems property is
set then the item objects are also freed. The implementation of this method is deferred
to subclasses by declaring it as abstract.

Methods First and Next provide with a way to iterate through the items in a container.
The First function returns the first item in a container or NIL, if the container is
empty. The Next function returns the next item in the container or NIL, if there are no
more items left. Both of these methods are declared as abstract in the TContainer
class, so they must be implemented by the inheriting classes. Note that the order in
which the items in a container are returned is not restricted in any way. A container
may iterate through its items in an arbitrary order, even when the container keeps the
items in some predefined order.

The Count property tells the number of items in a container. The property gets its
value from the abstract method GetCount. Unlike in the TList class the value of this
property may not be changed. This property is read-only.

Class TSequence
TSequence is a container that keeps its items in a sequential, random-access structure.
The class delegates most of its operations to the Delphi’s TList class wrapping it to
the TContainer interface. The declaration of the class is shown in Listing 3.



Delphi Persistent Container Library 7

Listing 3: TSequence class
  TSequence = class(TContainer)
  private
    FList: TList;
    FIndex: Integer;
  protected
    constructor Read(Reader: TItemReader); override;
    procedure Write(Writer: TItemWriter); override;
    function GetCount: Integer; override;
    function GetItems(Index: Integer): TItem;
  public
    constructor Create(AHost: TItem; AOwnsItems: Boolean =
      false); override;
    destructor Destroy; override;
    procedure Assign(Source: TContainer); override;
    function Add(Item: TItem): Integer;
    procedure Clear; override;
    procedure Delete(Index: Integer);
    procedure Exchange(Index1, Index2: Integer);
    function First: TItem; override;
    function Next: TItem; override;
    function IndexOf(Item: TItem): Integer;
    procedure Insert(Index: Integer; Item: TItem);
    procedure Move(CurIndex, NewIndex: Integer);
    function Remove(Item: TItem): Integer;
    property Items[Index: Integer]: TItem read GetItems;
      default;
  end;

Since TSequence is an array-like, random access data structure, a client can refer to
its items directly using an integer index. The Items array property can be used to read
the Index'th item of the sequence. However, items cannot be inserted to a TSequence
object using the Items property (i.e., the property is read-only). Its is also the default
property of the class.

The class provides two methods for both insertion and removal operations. To insert
an item to a TSequence object, a client can use either the Add or Insert method. Add
inserts the item to the end of the sequence, and Insert to the position specified by the
Index parameter. In the same manner, the Remove method removes the item which
reference is given as an argument, whereas Delete removes the item specified by its
position (index). These methods work in the same way as the ones in the TList class,
so their usage should be familiar to an experienced Delphi programmer.

Finally, the IndexOf method returns the position of the given item or –1, if the item is
not in the sequence.

Class TSet
TSet is a container class that represents the mathematical set structure. It is an unor-
dered structure that contains unique items, that is to say, no duplicates. The insertion
and removal operations are fast in the TSet class, whereas iteration through the items
in the set is not as efficient as, for example, in the TSequence class. This is due to the
internal representation of the set, which is done using a hash table (the THashTable
class). Listing 4 shows the declaration of the TSet class.

Listing 4: TSet class
  TSet = class(TContainer)
  private
    FTable: THashTable;
  protected
    constructor Read(Reader: TItemReader); override;
    procedure Write(Writer: TItemWriter); override;
    function GetCount: Integer; override;
  public
    constructor Create(AHost: TItem; AOwnsItems: Boolean =
      false); override;



Delphi Persistent Container Library 8

    destructor Destroy; override;
    procedure Assign(Source: TContainer); override;
    procedure Clear; override;
    function First: TItem; override;
    function Next: TItem; override;
    function Belongs(Item: TItem): Boolean;
    procedure Insert(Item: TItem);
    procedure Intersection(Other: TSet);
    function Remove(Item: TItem): Boolean;
    procedure Subtract(Other: TSet);
    procedure Union(Other: TSet);
  end;

The function Belongs can be used to test if a given item is in the set. The function re-
turns TRUE if the item belongs to the set, and FALSE otherwise.

The Insert and Remove methods are used to insert an item to a set or remove an item
from it. If the user inserts a same item to the set twice, only one reference is actually
stored to the set. The return value of Remove tells if the given item was actually in the
set. No error occurs, if the user tries to remove a nonexistent item from a set.

TSet presents also common binary set operations: union, intersection, and subtraction.
The result of these operations is stored to the current TSet object, that is, the object on
which the method was called. The Intersection method performs an intersection op-
eration between the current set and another set given as an argument. Intersection
leaves only those items in the resulting set that belong to both sets. The Subtract pro-
cedure removes all the items from the current set that are present in both sets. The
Union procedure combines two sets so, that items belonging to either of the source
sets are in the resulting set.

Class TDictionary
The TDictionary class represents a random-access map structure that uses strings as
keys to its items. This container is also implemented internally as a hash table (using
the TStringTable utility class).

Listing 5: TDictionary class
  TDictionary = class(TContainer)
  private
    FTable: TStringTable;
  protected
    constructor Read(Reader: TItemReader); override;
    procedure Write(Writer: TItemWriter); override;
    function GetCount: Integer; override;
    function GetItems(const Key: string): TItem;
  public
    constructor Create(AHost: TItem; AOwnsItems: Boolean =
      false); override;
    destructor Destroy; override;
    procedure Assign(Source: TDictionary); reintroduce;
    procedure Clear; override;
    function First: TItem; override;
    function Next: TItem; override;
    procedure Insert(const Key: string; Item: TItem);
    function Remove(const Key: string): TItem;
    property Items[const Key: string]: TItem read GetItems;
      default;
  end;

 TDictionary (Listing 5) adds only two methods and one property to the TContainer
interface. The Insert method is used to insert an item with a key given as the first ar-
gument to a dictionary. Similarly, the Remove function removes an item with the
given key from a dictionary. To access the items in a dictionary, the class provides
the Items array property. The key of the accessed item is used as an index argument.



Delphi Persistent Container Library 9

It is not possible to add new key–item pairs or modify the old ones using the Items
property (i.e., the property is read-only).

Using Persistence
There are some restrictions concerning the objects that can be serialized using the
persistence mechanism. First of all, only the descendants of the TItem class can be
made persistent. This means that no VCL or other legacy classes can be serialized
using the framework.

Secondly, the objects that are to be written to a stream by the framework must form a
closed system, which has a single root object that owns all the other serialized ob-
jects. The state of the application is saved by writing this root object to a stream. All
the subobjects are then recursively written to the same stream by their owners. This
might seem as a big restriction at first, but it is actually a good thing since it encour-
ages the user to create hierarchical object structures, and therefore enforces good
class designs. The persistence mechanism used to save Delphi components uses ex-
actly the same kind of technique, so it has found to be a good solution to the persis-
tence problem. The reason that I am not using Delphi's own persistence mechanism is
that it is designed specifically for the needs of the component classes and doesn't suit
very well for more generic purposes.

To use the persistence mechanism provided by the framework, the user has to follow
the five steps described below:

1. Derive all the classes that need to be serialized from the TItem class.

2. Implement the virtual Read and Write methods of the TItem class.

3. Call either RegisterItemClass or RegisterItemClasses procedure in the initializa-
tion block of the application to register the persistent classes.

4. If some persistent objects reside in a container that handles the serialization,
make sure that these objects are owned by exactly one container. The owner
container is responsible for serializing its items. Other containers (that are not
owners) may refer to persistent objects, but they do not store them— instead they
write only the references of the contained objects to a stream.

5. To write the objects to a stream, call either the SaveItemToStream or the Save-
ItemToFile procedure giving the root object in the object hierarchy (the one that
owns all the other objects) as an argument. Conversely, to read the objects from a
stream, call either the LoadItemFromStream or LoadItemFromFile function.
They return the root object of the hierarchy along with all the other saved ob-
jects.

We will now walk through the steps in the preceding list in more detail to give a
clearer picture of how the persistence mechanism is used in the framework.

Implementing the Read and Write Methods
The policy of the framework is such that each persistent object is responsible for seri-
alizing its own state. This is done by implementing the virtual Read and Write meth-
ods of the TItem class. These methods are declared empty in TItem so they do not
have to be implemented in every inheriting class. However, if the inheriting class in-
tends to use the persistence services, this task is obligatory. The actual reading and
writing of an object's state is delegated to the TItemReader and TItemWriter classes,
which are derived from the VCL classes TReader and TWriter respectively. These
reader and writer classes always represent some input/output stream and provide with
means to read and write common data types from/to a stream. TItemReader and
TItemWriter extend these classes so that also TItem descendants can be read from or
written to a stream.



Delphi Persistent Container Library 10

Writing the State of an Item to a Stream
The writing of an item's state is done using the TItemWriter class, which extends the
VCL class TWriter. All the elementary data types, including integers, real numbers,
strings, etc. can be serialized using the methods of the TWriter class. Refer to the
VCL documentation for further information about the usage of the reader and writer
classes.

Listing 6: TItemWriter class
  TItemWriter = class(TWriter)
  public
    constructor Create(Stream: TStream);
    procedure WriteClassTable;
    procedure WriteItem(AItem: TItem);
    procedure WriteReference(AReference: TItem);
  end;

The stream that the writer object corresponds to is given as an argument to the con-
structor of the TItemWriter class (Listing 6). The class adds two procedures to the
TWriter class that can be called in the Write method of an item class. The WriteItem
method writes an item object to the stream. This method effectively calls the Write
method of the item given as an argument, which recursively writes all the objects
owned by it to the same stream. WriteItem can be called only for those items that are
owned by the serialized item. If the serialized item refers to another item that it does
not own, a reference to this item must be written to the stream using the WriteRefer-
ence method.

Reading the State of an Item from a Stream
A TItemReader object, which is used to read an item's state, is given as an argument
to the Read method of the TItem class. This method is in fact a constructor, which has
to allocate first all the dynamic resources that the object requires. Then, the fields of
an item are read using the methods the TItemReader class. The declaration of this
class is shown in Listing 7.

Listing 7: TItemReader class
  TItemReader = class(TReader)
  private
    FClasses: THashTable;
    FItems: THashTable;
    FReferences: TList;
    FCallBackRefs: TList;
  public
    constructor Create(Stream: TStream);
    destructor Destroy; override;
    procedure ReadClassTable;
    function ReadItem: TItem;
    procedure ReadReference(var AReference: TItem);
    procedure ReadRefCallBack(CallBack: TResolveCallBack);
    procedure ResolveReferences;
  end;

Again, the stream corresponding to the reader object is given as an argument to the
constructor. The ReadItem method reads an item owned by the current item from a
stream, and ReadReference reads a reference to another item object.

Note: A field variable, which points to another item object, is given to the ReadReference
procedure by reference. This is because the item, to which the field points to, is not
necessarily read from the stream at the time when the ReadReference procedure is
called. In fact, all the references are resolved in separate pass after all of the items are
read from the stream. This is done automatically by the global LoadItemFromStream
procedure, so that the user needs not to worry about this chore. The user should note,
however, that a reference field is not initialized right after the ReadReference method
returns, but after all the stored items have been read.



Delphi Persistent Container Library 11

Registering Persistent Classes
All the persistent item classes have to be registered with the framework so that the
class table, which tells the types of the saved items, can be stored to a stream along
with the objects. This registration is done usually in the initialization block of the unit
in which the classes are declared. As an example, Listing 8 shows the code that reg-
isters the container classes provided by the framework. This code resides in the ini-
tialization block of the unit “Containers.pas”.

Listing 8: Registration of the container classes
initialization
  RegisterItemClasses([TSequence, TSet, TDictionary]);

Either the RegisterItemClass or RegisterItemClasses procedure (Listing 9 shows the
declarations of these procedures) can be used to register the persistent classes. The
only difference between these procedures is that RegisterItemClasses accepts a vari-
able-length array of classes, whereas RegisterItemClass takes only one class as an ar-
gument.

Listing 9: Registration procedures
procedure RegisterItemClass(AClass: TItemClass);
procedure RegisterItemClasses(AClasses: array of TItemClass);

Saving Items to a Stream or File
Saving persistent items to a stream is easy. Just call the global SaveItemToStream
procedure giving the root object as an argument (Listing 10). The root object is the
item that either directly or indirectly owns all other items. Usually the root object rep-
resents some fundamental object of the application such as a document in a word
processor or a picture in a drawing application. The second argument of the Save-
ItemToStream procedure specifies the stream to which the items are stored. This
stream must be write enabled.

Listing 10: Procedures used to save items
procedure SaveItemToStream(Item: TItem; Stream: TStream);
procedure SaveItemToFile(Item: TItem; const FileName: string);

Alternatively, if items are saved to a disk (as usually is the case), the procedure Save-
ItemToFile can be used. This procedure takes a file name as its argument instead of a
stream. Listing 11 demonstrates how to create an appropriate stream for the Save-
ItemToStream procedure by showing the implementation of the SaveItemToFile pro-
cedure. Note, how the stream is created on the fly using the try— finally statement.
This ensures that the file is closed and all other resources freed in case of failure or
some other interruption in the saving process.

Listing 11: SaveItemToFile procedure
procedure SaveItemToFile(Item: TItem; const FileName: string);
var Stream: TFileStream;
begin
  Stream := TFileStream.Create(FileName, fmCreate);
  try
    SaveItemToStream(Item, Stream);
  finally
    Stream.Free;
  end;
end;

Loading Items from a Stream or File
Loading an entire object graph from a stream is done by reading the root item of the
system using the LoadItemFromStream function (Listing 12). This function returns
the root object along with all the subobjects saved with it. The stream from which the



Delphi Persistent Container Library 12

item is read is given as an argument. Similarly, the LoadItemFromFile function re-
stores the saved object graph from a file, which name is given as an argument.

Listing 12: Functions used to load items
function LoadItemFromStream(Stream: TStream): TItem;
function LoadItemFromFile(const FileName: string): TItem;

These functions work in the same manner as procedures used to save items to a
stream or file. Usually the LoadItemFromStream function is called inside a try— fi-
nally block as shown in Listing 13, which shows the implementation of the LoadItem-
FromFile function.

Listing 13: LoadItemFromFile function
function LoadItemFromFile(const FileName: string): TItem;
var Stream: TFileStream;
begin
  Stream := TFileStream.Create(FileName, fmOpenRead or
    fmShareDenyWrite);
  try
    Result := LoadItemFromStream(Stream);
  finally
    Stream.Free;
  end;
end;

Design Philosophy behind the PCL Framework
As stated in the section “Class Hierarchy and Applicability” at page 4, a framework
always dictates somewhat the structure of applications using the framework. For ex-
ample, a Delphi programmer who uses the Visual Component Library has to derive
all the windows his/her program uses from the TForm class. Thus, the VCL can be
seen as a framework for building graphical Windows programs. Programs, which use
the VCL must follow certain rules and conventions to be able to use the services pro-
vided by the library. As another example, consider the Delphi's component architec-
ture. To make a custom component with a window handle, the programmer has to de-
rive his/her component from the TCustomControl class and override the Paint
method. All this results that the programs build on the VCL framework contain simi-
lar structural parts, which gives uniformity to the design process and makes it easier
to get started with the programming of a new application.

The VCL framework deals mainly with the user interface of an application and pro-
vides services for making new windows and controls easily. Other kinds of services,
such as providing persistent data structures, are left to the application programmer.
This is where the PCL framework comes to the picture. The application classes rep-
resenting the structure and logic of a modeled problem can use the PCL framework to
get the same kind of services that is provided by the VCL components. The VCL and
PCL libraries are thus complementary to each other and, consequently, form a com-
bined design framework.

Model–View–Controller Approach
The PCL framework itself follows the Model–View–Controller approach as described
in the book Design Patterns by Gamma et al. This approach separates the data that a
program is modeling from its representation. The idea is to isolate the classes model-
ing the problem environment (sometimes called document classes) in their own unit
and make them independent of the user interface classes such as windows and con-
trols that visualize and manipulate the model (view and controller classes). As an ex-
ample, consider a spreadsheet application, which essentially manages cells filled with
various types of data arranged into rows and columns. The data is stored internally in
some data structure, for example, in a two-dimensional array. This structure can be
represented graphically in many ways (e.g., as a table or chart). User can manipulate



Delphi Persistent Container Library 13

the data using the user interface; for example, switch between views or enter new
values to cells. To summarize, the model is an independent unit that does not know
about the view or the controller. Similarly, the view shows the model visually and is
not concerned about the ways to modify the model. Lastly, the controller knows how
to manipulate the model without any knowledge about the view.

The Model–View–Controller approach is used in many object-oriented libraries that
provide with graphical user interfaces. Most notably, the Microsoft Foundation
Classes (MFC) shipped with the Microsoft’s Visual C++ development environment
follows this approach quite faithfully. The only difference is that in MFC terminology
a model corresponds to a document.

The original idea of the Model–View–Controller approach was to split the user inter-
face into two logical units, one for providing a views to the modeled data on a screen,
and other for controlling the model with, for example, menus or buttons. Since the
VCL combines these elements rather tightly with its event handling mechanism, it is
usually quite difficult to separate the controllers and views completely from each
other. Nevertheless, by doing so the program structure becomes more flexible and
extensible.

Note: The action objects (derived from the TAction class) in the version 4 of Delphi take a
step towards separating the controller classes from the view classes. An action is ba-
sically a user command that is triggered by some user interface element, such as
menu or keyboard. The command represented by this action can then be executed
without any knowledge of the component that triggered it. See the VCL documenta-
tion for further information about the action classes.

The PCL framework is primarily used in the model part of an application, that is, in
the classes that represent the handled data. The persistent containers can be used as
building blocks for modeling the data. Continuing the previous example, the object
model of a spreadsheet application could have a root class that represents a single ta-
ble. Inside the table class could be classes that represent the rows of the table, which
in turn contain the cell classes modeling an individual cell. Since the cells of a table
are indexed, it is natural to store them in a TSequence object, which is an array-like,
random-access data structure. By deriving all the classes representing different ele-
ments of the spreadsheet table from the TItem class and implementing the Read and
Write methods, the table can be made persistent with little effort.

PCL Utility Classes
This section describes the usage of the utility classes of the Persistent Container Li-
brary. These utility classes form a toolkit of primitive data structures that can be used
for many purposes. The interfaces of these classes resemble the VCL classes like
TList or TStringList and their usage is similar to these classes in many respects. The
data structures have been made as customizable as possible, which sometimes ex-
poses the internal representation of the classes, but is nevertheless necessary for pro-
viding sufficient freedom to the user. So, instead of hiding the implementation behind
an abstraction, these classes expose their representation for the sake of flexibility and
efficiency. In practice this means that there is no memory management or persistence
support for these classes. Also, the user has to understand the main principles of the
data structures that these classes represent, in order to make best use of them.

Each utility class belonging to the Persistent Container Library is described separately
in its own section below.

Class THashTable
A hash table is an associative data structure that uses keys to refer to its elements. The
elements of a hash table reside in a normal array. A special function called the hash
function is used to calculate the position of each key–item pair. The hash function
tries to distribute the keys evenly across the array, so that there are as few collisions
as possible. A collision happens, when the hash function maps two different keys to



Delphi Persistent Container Library 14

the same position. Collisions are handled using some resolution method, like chaining
or open addressing. The benefits for using a hash table are that its insertion and re-
moval operations are on average very fast. The hash table as a data structure com-
bines the direct access used in vectors with the flexibility of linked lists. For these
reasons, the hash table has become very popular data structure for many purposes.
Some languages, like Perl or Java, use it very extensively.

The class THashTable is a hash table implementation that uses integer keys. The item
type of the class is untyped pointer, so virtually any kind of data can be stored in it.
The class resides in the unit “Hashtables.pas” and its declaration is shown in Listing
14.

Listing 14: THashTable class
  THashTable = class(TObject)
  private
    Alpha: Double;
    FTable: PPointerList;
    FCount: Integer;
    FCapacity: Integer;
    FMaximumFillRatio: Double;
    FPosition: Integer;
    FCollisions: Integer;
    FInsertions: Integer;
    function GetAverageCollision: Real;
    procedure SetMaximumFillRatio(Value: Double);
  protected
    procedure Error(const msg: string);
    function Get(Key: Integer): Pointer; virtual;
    function GetIndex(Key: Integer): Integer;
    procedure Grow; virtual;
    function Hash(Key: Integer): Integer; virtual;
    procedure Put(Key: Integer; Item: Pointer); virtual;
    procedure Rehash(OldTable: PPointerList; OldCount:
      Integer);
    procedure SetCapacity(NewCapacity: Integer);
  public
    constructor Create;
    destructor Destroy; override;
    procedure Clear; virtual;
    function Current: Pointer; virtual;
    function DeleteCurrent: Pointer;
    function First: Pointer; virtual;
    function Insert(Key: Integer; Item: Pointer): Pointer;
      virtual;
    function Next: Pointer; virtual;
    function NextSame(Key: Integer): Pointer;
    function Remove(Key: Integer): Pointer; virtual;
    procedure Pack;
    property Capacity: Integer read FCapacity write
      SetCapacity;
    property Count: Integer read FCount;
    property MaximumFillRatio: Double read FMaximumFillRatio
      write SetMaximumFillRatio;
    property Items[Key: Integer]: Pointer read Get write Put;
      default;
    property AverageCollisions: Real read GetAverageCollision;
  end;

Only the public interface of the THashTable class is documented here. Those who
wish to extend the class by inheritance should refer to the source code for details of
the implementation.

The THashTable object is created normally using the Create constructor, which takes
no parameters. Default values are assigned to the properties when a hash table is cre-
ated. The properties of the class are:



Delphi Persistent Container Library 15

• Capacity. Corresponds to the number of items that can be stored to the hash table
without reallocating new memory. The value of this property can be changed to
speed up the insertions when the upper limit of the number of items stored to a
hash table is known beforehand. The default value is 256.

Note: Actually, the value of the Capacity property should be set to the number of elements
inserted in the hash table divided by the value of the MaximumFillRatio property be-
cause it is not desirable to fill the hash table completely up to the capacity limit. See
the description of the MaximumFillRatio property below for further information.

• Count. The number of items currently stored to a hash table. This property is
read-only. Initially a hash table is empty, so the default value is 0.

• MaximumFillRatio. This property tells, how full a hash table may become be-
fore allocating more memory for it. As a hash table fills up, the number of colli-
sions also increases. To prevent the deterioration of performance, new space is
allocated before the table becomes completely full. The ratio between the number
of items (Count) and the capacity of a hash table (Capacity) is bounded by the
value of the MaximumFillRatio property. The default value is 0.8. The user
should seldom alter this value, since it is set initially to a good trade-off between
the number of collisions and the utilization of the memory.

• AverageCollisions. This is a read-only property, which tells the average number
of collisions of all the insertions thus far. Sometimes, when the number of items
stored in a hash table is large and unknown, it may be useful to adjust the maxi-
mum fill ratio at run time to better utilize the memory. The value of the Aver-
ageCollisions property can be used to determine the direction and magnitude of
this adjustment. The need for adjustments should, nevertheless, occur only on
special situations. Generally, the optimal value of the maximum fill ratio is so
difficult to determine that little is gained in the long run by modifying the value
of the MaximumFillRatio property constantly.

• Items. This array property provides access to the items in a hash table. The key
of the item is given as an index argument. Items can be both fetched and inserted
using this property. If an item with the given key already exists in the hash table,
the value of the key is changed. Otherwise a normal insertion occurs.

The public methods of the THashTable class are described in the following list:

• Clear. Removes all the items in a hash table.

• First and Next. The user can iterate through the items of a hash table using these
methods. The First function returns the first item in a table or NIL, if the table is
empty. Similarly, the Next function returns the next item in a table or NIL, if there
are no more items left. Both these functions change the current item of a table to
the one they return.

• NextSame. Returns the next item with the same key as the current item or NIL, if
the table does not contain such an item.

• Current. This function returns the current item in a hash table.

• DeleteCurrent. Deletes the current item in a table.

• Insert and Remove. These functions are used to insert an item to a hash table and
remove an item from it. The key of the inserted item must be a positive integer
and the item itself is an untyped pointer. The key–item pair is given as an argu-
ment to the Insert function. The pointer, which is returned, tells the address of
the item pointer. If an item with the same key already exists in the table, a dupli-
cate key is created. Conversely, the Remove function removes the first item with
the given key and returns it. If an item with the given key is not found in the hash
table, NIL is returned.

• Pack. Packs a hash table to reduce its memory usage. This is done by setting the
capacity to the smallest possible value taking into account the number of items



Delphi Persistent Container Library 16

and the maximum fill ratio. Since the packing is quite time consuming operation,
this procedure should be called only after no more items are inserted to the table.

Class TStringTable
The TStringTable class (Listing 15) is derived from the THashTable class and it has
basically the same public interface. Only differences are that the TStringTable class
uses string keys and contains items of the TObject type. The item type is changed to
TObject to make the interface similar to the Delphi’s TStringList class.

Listing 15: TStringTable class
  TStringTable = class(THashTable)
  private
    function ConvertKey(const Key: string): Integer;
    function FindKey(const Key: string; var Node:
      PStringTableNode): Boolean;
  protected
    function Get(const Key: string): TObject; reintroduce;
    procedure Put(const Key: string; Item: TObject);
      reintroduce;
  public
    destructor Destroy; override;
    procedure Clear; override;
    function Current: TObject; reintroduce;
    function CurrentKey: string;
    function First: TObject; reintroduce;
    function Insert(const Key: string; Item: TObject): Pointer;
      reintroduce;
    function Next: TObject; reintroduce;
    function Remove(const Key: string): TObject; reintroduce;
    property Items[const Key: string]: TObject read Get write
      Put; default;
  end;

The TStringTable class introduces only one new method namely CurrentKey. It re-
turns the key of the current item in a hash table. The signatures of other methods are
modified to correspond to the new key and item types using the reintroduce keyword
provided by Delphi 4. This keyword is used to change the signature of a virtual
method in a subclass.

Class TBitSet
The TBitSet class is a set data structure that can be used to store positive integers. In
some sense, it is the dynamic version of the set type in Object Pascal, because it is
implemented in the same way. The set is actually a bit string in the memory where
one bit corresponds to every element of the set. If the bit corresponding to an element
is set in the bit string then the element belongs to the TBitSet object otherwise it does
not. The TBitSet class resides in the “BitSet.pas” unit and its declaration is shown in
Listing 16.

Listing 16: The TBitSet class
  TBitSet = class
  private
    FBitString: Pointer;
    FCapacity: Integer;
    FComplemented: LongInt;
    FBlock: Pointer;
    FBlockFirst: Integer;
    FBlockLeft: Integer;
    FCurrentDWord: Longword;
    function GetCount: Integer;
  protected
    procedure Error;
    procedure SetCapacity(NewCapacity: Integer);
    procedure SetBit(Index: Integer; Value: Boolean);



Delphi Persistent Container Library 17

  public
    destructor Destroy; override;
    procedure Insert(Element: Integer);
    procedure Remove(Element: Integer);
    function Belongs(Element: Integer): Boolean;
    procedure Clear;
    procedure Pack;
    procedure Complement;
    procedure Intersection(Other: TBitSet);
    procedure Union(Other: TBitSet);
    procedure Subtract(Other: TBitSet);
    function IsEqualTo(Other: TBitSet): Boolean;
    function IsSubsetOf(Other: TBitSet): Boolean;
    function IsProperSubsetOf(Other: TBitSet): Boolean;
    function First: Integer;
    function Next: Integer;
    property Count: Integer read GetCount;
  end;

There is only one property in the TBitSet class namely Count, which tells the number
of items stored in the set. This property is read-only. The class supports all the com-
mon set operations. These operations are described separately in the list below:

• Insert and Remove. These methods are used to insert and remove an element
to/from a TBitSet object. The element is given as an argument and it must be a
positive integer.

• Belongs. Tests if an element belongs to a set. The function returns TRUE, if the
element is in the set, and FALSE otherwise.

• Clear. Removes all the elements from a set clearing it completely.

• Pack. Packs a set to reduce the memory usage. Calling this function is profitable
only when we know that no more elements will be inserted to the set.

• Complement. This procedure complements a set. This means that every element
that belongs to the set will not be in it after calling this method, and conversely,
all the elements that do not belong to the set will be in it upon completion of this
operation.

• Intersection. This method performs an intersection operation with another set
that is specified by the Other parameter. The result is stored in the current TBit-
Set object, that is, the object on which the method was called. An intersection
leaves only those elements to the current set that belong to both TBitSet objects.

• Union. This method performs a union operation with another set that is specified
by the Other parameter. If an element belongs to either of the source sets, then it
will be in the resulting set after executing this method.

• Subtract. This method subtracts another set from the current set. This means that
if an element belongs to the current TBitSet object and also to the set specified by
the Other parameter, then it will be removed from the current set.

• IsEqualTo. This method tests if the current set, that is, the set on which the
method was called, is same than another set specified by the argument. If the sets
are identical, TRUE is returned.

• IsSubsetOf. Tests if the set given as an argument is a subset of the current TBit-
Set object, that is, the object on which the method was called. A set is a subset of
another set, if every element belonging to it is present also in the other set. If the
set specified by the argument is indeed a subset of the current set, then TRUE is
returned. Otherwise the function returns FALSE.

• IsProperSubsetOf. Same as above, only now we test also if the sets are equal. If
the TBitSet object given as an argument is a subset of the current set and the sets
are not equal, TRUE is returned. Otherwise the function returns FALSE.



Delphi Persistent Container Library 18

• First and Next. These methods are used to iterate through the element of a TBit-
Set object. The First function returns the first element of the set or –1, if the set is
empty. Similarly, the Next function returns the next element in the set or –1, if
there are no more elements left.

The majority of these operations are implemented using the assembly language, so
they are very optimized and fast. The aim of the TBitSet class was to make algo-
rithmic problems easier and raising their abstraction level by providing with a toolkit
for calculating with mathematical sets. TBitSet objects are usually used in connection
with a list or array so that the elements of the set correspond to the indices of the list.
Thus, the elements of the TBitSet object are associated with the items stored in the
list. The only requirement is that the indices of the items in the list or array do not
change while we are working the TBitSet objects, because this would destroy the
mapping from the elements to the items.


